If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-70x+250=0
a = 3; b = -70; c = +250;
Δ = b2-4ac
Δ = -702-4·3·250
Δ = 1900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1900}=\sqrt{100*19}=\sqrt{100}*\sqrt{19}=10\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-10\sqrt{19}}{2*3}=\frac{70-10\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+10\sqrt{19}}{2*3}=\frac{70+10\sqrt{19}}{6} $
| n+2-5=-1 | | (2a/5)=4 | | 2(4x-3)=-12+8x | | 2x-5(x-3)=-2+5x-23 | | 1.2x+x=2+2.4 | | 1.33^-10-1=x | | -5u+20=-7(u-4) | | (a/5)+7=-2 | | 1-6r+2r=17 | | 2v+3=-7 | | (9x–6)=4x+10 | | 6^z=1/36 | | 4y+8=3y+13 | | 7x+33x-8=8(5x+10) | | x^2+8*x=-31 | | 5(0-y=10 | | w-4/5=1/3 | | 2x+1/x+x-7/6=2 | | 7x+5x-7=3(4x+6) | | 7/10=x/16 | | (1+x)^10=1.33 | | y/7=16/28 | | 6x+7=2x-9= | | -25n-35=9+3n | | 4s+13=6s-3 | | 2u-16=6 | | x6=5 | | 4x-5=2x+7= | | 0.25+0.5+x=−0.75 | | 5x-4+2=40+3 | | 104=5x+9 | | 5,6=x/3,5 |